Charged impurity scattering in bilayer graphene
نویسندگان
چکیده
منابع مشابه
Correlated charged impurity scattering in graphene.
We study electron transport properties of graphene in the presence of correlated charged impurities via adsorption and thermal annealing of potassium atoms. For the same density of charged scattering centers, the sample mobility sensitively depends on temperature which sets the correlation length between the scatterers. The data are well-understood by a recent theory that allows us to quantitat...
متن کاملTheory of charged impurity scattering in two-dimensional graphene
Wereview thephysics of charged impurities in the vicinity of graphene. The long-range nature of Coulomb impurities affects both the nature of the ground state density profile and graphene’s transport properties. We discuss the screening of a single Coulomb impurity and the ensemble averaged density profile of graphene in the presence of many randomly distributed impurities. Finally, we discuss ...
متن کاملEffect of charged impurity correlations on transport in monolayer and bilayer graphene
We study both monolayer and bilayer graphene transport properties taking into account the presence of correlations in the spatial distribution of charged impurities. In particular we find that the experimentally observed sublinear scaling of the graphene conductivity can be naturally explained as arising from impurity correlation effects in the Coulomb disorder, with no need to assume the prese...
متن کاملThe complete impurity scattering formalism in graphene
We present the complete formalism that describes scattering in graphene at lowenergies. We begin by analyzing the real-space free Green’s function matrix, and its analytical expansions at low-energy, carefully incorporating the discrete lattice structure, and arbitrary forms of the atomic-orbital wave function. We then compute the real-space Green’s function in the presence of an impurity. We e...
متن کاملHelical scattering and valleytronics in bilayer graphene
We describe an angularly asymmetric interface-scattering mechanism which allows to spatially separate the electrons in the two low-energy valleys of bilayer graphene. The effect occurs at electrostatically defined interfaces separating regions of different pseudospin polarization, and is associated with the helical winding of the pseudospin vector across the interface, which breaks the reflecti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review B
سال: 2010
ISSN: 1098-0121,1550-235X
DOI: 10.1103/physrevb.82.041406